Una hipótesis Estadística es un proposición sobre los parámetros de una población o sobre la distribución de probabilidad de una variable aleatoria. Se puede definir además como técnica estadística que se sigue para decidir si rechazamos o no una hipótesis estadística en base a la información de u8na muestra.
El propósito de la prueba o de hipótesis es ayudar al investigador a tomar decisiones referentes a una población considerando la información de una muestra de dicha población.
Al realizar pruebas de hipótesis, se parte de un valor supuesto (hipotético) en parámetro poblacional. Después de recolectar una muestra aleatoria, se compara la estadística muestral, así como la media (x), con el parámetro hipotético, se compara con una supuesta media poblacional . Después se acepta o se rechaza el valor hipotético, según proceda. Se rechaza el valor hipotético sólo si el resultado muestral resulta muy poco probable cuando la hipótesis es cierta.
Etapas Para La Prueba De Hipótesis.
Etapa 1.- Planear la hipótesis nula y la hipótesis alternativa. La hipótesis nula (H0) es el valor hipotético del parámetro que se compra con el resultado muestral resulta muy poco probable cuando la hipótesis es cierta.
Etapa 2.- Especificar el nivel de significancia que se va a utilizar. El nivel de significancia del 5%, entonces se rechaza la hipótesis nula solamente si el resultado muestral es tan diferente del valor hipotético que una diferencia de esa magnitud o mayor, pudiera ocurrir aleatoria mente con una probabilidad de 1.05 o menos.
Etapa 3.- Elegir la estadística de prueba. La estadística de prueba puede ser la estadística muestral (el estimador no segado del parámetro que se prueba) o una versión transformada de esa estadística muestral. Por ejemplo, para probar el valor hipotético de una media poblacional, se toma la media de una muestra aleatoria de esa distribución normal, entonces es común que se transforme la media en un valor z el cual, a su vez, sirve como estadística de prueba.
Etapa 4.- Establecer el valor o valores críticos de la estadística de prueba. Habiendo especificado la hipótesis nula, el nivel de significancia y la estadística de prueba que se van a utilizar, se produce a establecer el o los valores críticos de estadística de prueba. Puede haber uno o más de esos valores, dependiendo de si se va a realizar una prueba de uno o dos extremos.
Etapa 5.- Determinar el valor real de la estadística de prueba. Por ejemplo, al probar un valor hipotético de la media poblacional, se toma una muestra aleatoria y se determina el valor de la media muestral. Si el valor crítico que se establece es un valor de z, entonces se transforma la media muestral en un valor de z.
Etapa 6.- Tomar la decisión. Se compara el valor observado de la estadística muestral con el valor (o valores) críticos de la estadística de prueba. Después se acepta o se rechaza la hipótesis nula. Si se rechaza ésta, se acepta la alternativa; a su vez, esta decisión tendrá efecto sobre otras decisiones de los administradores operativos, como por ejemplo, mantener o no un estándar de desempeño o cuál de dos estrategias de mercadotecnia utilizar.
La distribución apropiada de la prueba estadística se divide en dos regiones: una región de rechazo y una de no rechazo. Si la prueba estadística cae en esta última región no se puede rechazar la hipótesis nula y se llega a la conclusión de que el proceso funciona correctamente.
Al tomar la decisión con respecto a la hipótesis nula, se debe determinar el valor crítico en la distribución estadística que divide la región del rechazo (en la cual la hipótesis nula no se puede rechazar) de la región de rechazo. A hora bien el valor crítico depende del tamaño de la región de rechazo.
PASOS DE LA PRUEBA DE HIPÓTESIS
2. Expresar la hipótesis alternativa
3. Especificar el nivel de significancia
4. Determinar el tamaño de la muestra
5. Establecer los valores críticos que establecen las regiones de rechazo de las de no rechazo.
6. Determinar la prueba estadística.
7. Coleccionar los datos y calcular el valor de la muestra de la prueba estadística apropiada.
8. Determinar si la prueba estadística ha sido en la zona de rechazo a una de no rechazo.
9. Determinar la decisión estadística.
10 Expresar la decisión estadística en términos del problema.
10 Expresar la decisión estadística en términos del problema.
Errores de tipo I y de tipo II.
Si rechazamos una hipótesis cuando debiera ser aceptada, diremos que se ha cometido un error de tipo I. Por otra parte, si aceptamos una hipótesis que debiera ser rechazada, diremos que se cometió un error de tipo II. En ambos casos, se ha producido un juicio erróneo.
Para que las reglas de decisión (o no contraste de hipótesis) sean buenos, deben diseñarse de modo que minimicen los errores de la decisión; y no es una cuestión sencilla, porque para cualquier tamaño de la muestra, un intento de disminuir un tipo de error suele ir acompañado de un crecimiento del otro tipo. En la práctica, un tipo de error puede ser más grave que el otro, y debe alcanzarse un compromiso que disminuya el error más grave.
La única forma de disminuir ambos a la vez es aumentar el tamaño de la muestra que no siempre es posible.
Niveles de Significación.
Al contrastar una cierta hipótesis, la máxima probabilidad con la que estamos dispuesto a correr el riesgo de cometerán error de tipo I, se llama nivel de significación.
Esta probabilidad, denota a menudo por eso, suele especificar antes de tomar la muestra, de manera que los resultados obtenidos no influyan en nuestra elección.
En la práctica, es frecuente un nivel de significación de 0,05 ó 0,01, si bien se une otros valores. Si por ejemplo se escoge el nivel de significación 0,05 (ó 5%) al diseñar una regla de decisión, entonces hay unas cinco (05) oportunidades entre 100 de rechazar la hipótesis cuando debiera haberse aceptado; Es decir, tenemos un 95% de confianza de que hemos adoptado la decisión correcta. En tal caso decimos que la hipótesis ha sido rechazada al nivel de significación 0,05, lo cual quiere decir que tal hipótesis tiene una probabilidad 0,05 de ser falsa.
Prueba de Uno y Dos Extremos.
Cuando estudiamos ambos valores estadísticos es decir, ambos lados de la media lo llamamos prueba de uno y dos extremos o contraste de una y dos colas.
Con frecuencia no obstante, estaremos interesados tan sólo en valores extremos a un lado de la media (o sea, en uno de los extremos de la distribución), tal como sucede cuando se contrasta la hipótesis de que un proceso es mejor que otro (lo cual no es lo mismo que contrastar si un proceso es mejor o peor que el otro) tales contrastes se llaman unilaterales, o de un extremo. En tales situaciones, la región crítica es una región situada a un lado de la distribución, con área igual al nivel de significación.
Curva Característica Operativa Y Curva De Potencia
Podemos limitar un error de tipo I eligiendo adecuadamente el nivel de significancia. Es posible evitar el riesgo de cometer el error tipo II simplemente no aceptando nunca la hipótesis, pero en muchas aplicaciones prácticas esto es inviable. En tales casos, se suele recurrir a curvas características de operación o curvas de potencia que son gráficos que muestran las probabilidades de error de tipo II bajo diversas hipótesis. Proporcionan indicaciones de hasta qué punto un test dado nos permitirá evitar un error de tipo II; es decir, nos indicarán la potencia de un test a la hora de prevenir decisiones erróneas. Son útiles en el diseño de experimentos por que sugieren entre otras cosas el tamaño de muestra a manejar.
Ejemplo prueba de Hipotesis
Determine si la región de rechazo es de la cola derecha, de la cola izquierda o de dos colas.
H0 : = 15, H1 : ≠ 15, =.05
H0 : p ≤0.7, H1 : p > 0.7, =.02
Solución
La forma de la región de rechazo está determinada por la hipótesis alterna.
a. H1 : ≠ 15 significa que la región está en ambas colas.
b. H1 : p > 7 significa que la región está en la cola derecha.
REFERENCIA
Quintana Carlos, Elementos de Inferencia Estadística, editorial Universidad de Puerto Rico.